Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 36(2): e360206, 2021. tab, graf
Article in English | LILACS | ID: biblio-1152698

ABSTRACT

ABSTRACT Purpose To evaluate clinical outcome following minimally invasive plate osteosynthesis (MIPO) associated with percutaneous transplantation of allogeneic adipose-derived mesenchymal stem cells (AD-MSC) at the tibial fracture site in dogs. Methods Thirty-six dogs presenting with nonarticular complete tibial fracture were included in this study. All fractures were treated by the same MIPO technique. The animals were divided in group 1 (n = 20) received a percutaneous application of 3 × 106 AD-MSC at the fracture site and group 2 (n = 16) did not receive any adjuvant treatment. Postoperative radiographic examinations were made at 15, 30, 60, 90 and 120 days. Results Fifty-eight percent of the patients were classified as skeletally immature. The median weight of the animals was 18.8 kg. The mean radiographic union time differed statistically between the AD-MSC group (28.5 days) and the control group (70.3 days). Sixty percent of dogs in group 1 and 56.25% of the group 2 were considered immature. Conclusions The use of allogeneic AD-MSC cell therapy and MIPO is a safe, viable and effective technique for promoting bone healing in nonarticular tibial fractures in dogs.


Subject(s)
Humans , Animals , Dogs , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Tibia/surgery , Bone Plates , Fracture Fixation, Internal
2.
Acta cir. bras ; 36(5): e360506, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278104

ABSTRACT

ABSTRACT Purpose To evaluate the biomechanical properties of a novel total hip replacement femoral stem. Methods Eight pairs of femurs from dog cadavers were used. The femurs were separated into different groups. A novel femoral stem with a convex proximal portion (Stem B) was biomechanically evaluated and compared to awell-known veterinary collared stem (Stem A). Femoral stems were inserted into the contralateral femurs from the same dog, forming 16 constructs. A flexo-compression load was applied on the axial axis of each sample. Maximum strength, deflection, stiffness, and energy absorption were analysed. Results Group B constructs showed significantly higher values (p ? 0.05) for the variables, except stiffness. The mean maximum strength was 1,347 ± 357 N for Group A and 1,805 ± 123 N for Group B (p ? 0.0069). The mean deflection was5.54 ± 2.63 mm for Group A and 10.03 ± 3.99 mm for Group B (p ? 0.0056). For the energy variable, the force was 6,203 ± 3,488 N/mm for Group A and 12,885 ± 5,056 N/mm for Group B (p ? 0.0054). Stem B had greater maximum strength, deflection, and energy. Conclusions The new stem was effective in neutralizing the impact of axial flexion-compression stresses during biomechanical tests in cadaveric models.


Subject(s)
Arthroplasty, Replacement, Hip , Pressure , Biomechanical Phenomena , Cadaver , Femur/surgery
SELECTION OF CITATIONS
SEARCH DETAIL